707 research outputs found

    On compression rate of quantum autoencoders: Control design, numerical and experimental realization

    Full text link
    Quantum autoencoders which aim at compressing quantum information in a low-dimensional latent space lie in the heart of automatic data compression in the field of quantum information. In this paper, we establish an upper bound of the compression rate for a given quantum autoencoder and present a learning control approach for training the autoencoder to achieve the maximal compression rate. The upper bound of the compression rate is theoretically proven using eigen-decomposition and matrix differentiation, which is determined by the eigenvalues of the density matrix representation of the input states. Numerical results on 2-qubit and 3-qubit systems are presented to demonstrate how to train the quantum autoencoder to achieve the theoretically maximal compression, and the training performance using different machine learning algorithms is compared. Experimental results of a quantum autoencoder using quantum optical systems are illustrated for compressing two 2-qubit states into two 1-qubit states

    Research on the compression algorithm of the infrared thermal image sequence based on differential evolution and double exponential decay model.

    Get PDF
    This paper has proposed a new thermal wave image sequence compression algorithm by combining double exponential decay fitting model and differential evolution algorithm. This study benchmarked fitting compression results and precision of the proposed method was benchmarked to that of the traditional methods via experiment; it investigated the fitting compression performance under the long time series and improved model and validated the algorithm by practical thermal image sequence compression and reconstruction. The results show that the proposed algorithm is a fast and highly precise infrared image data processing method

    Galactic Disk Bulk Motions as Revealed by the LSS-GAC DR2

    Full text link
    We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to \sim 2 kpc, a local subset of the global sample consisting \sim 5,400 stars within 150 pc, and an anti-center sample containing \sim 4,400 AFGK dwarfs and red clump stars within windows of a few degree wide centered on the Galactic anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to \sim 2 kpc with a spatial resolution of \sim 250 pc. Typical values of the radial and vertical components of bulk motion range from -15 km s1^{-1} to 15 km s1^{-1}, while the lag behind the circular speed dominates the azimuthal component by up to \sim 15 km s1^{-1}. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens km s1^{-1}. Bending- and breathing-mode perturbations are clearly visible, and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars of different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. (2012) at Galactocentric radii 10--11 kpc is confirmed. However, just beyond this distance, our data also reveal a new triple-peaked structure.Comment: 27 pages, 17 figures, Accepted for publication in a special issue of Research in Astronomy and Astrophysics on LAMOST science

    4-Methyl-2-n-propyl-1H-benzimidazole-6-carboxylic acid

    Get PDF
    In the title compound, C12H14N2O2, the benzene ring and imidazole ring are almost coplanar, making a dihedral angle of 2.47 (14)°. Inter­molecular O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds stabilize the crystal structure
    corecore